Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Front Physiol ; 13: 932013, 2022.
Article in English | MEDLINE | ID: covidwho-2089890

ABSTRACT

Peripheral blood smear is a simple laboratory tool, which remains of invaluable help for diagnosing primary and secondary abnormalities of blood cells despite advances in automated and molecular techniques. Red blood cells (RBCs) abnormalities are known to occur in many viral infections, typically in the form of mild normo-microcytic anemia. While several hematological alterations at automated complete blood count (including neutrophilia, lymphopenia, and increased red cell distribution width-RDW) have been consistently associated with severity of COVID-19, there is scarce information on RBCs morphological abnormalities, mainly as case-reports or small series of patients, which are hardly comparable due to heterogeneity in sampling times and definition of illness severity. We report here a systematic evaluation of RBCs morphology at peripheral blood smear in COVID-19 patients within the first 72 h from hospital admission. One hundred and fifteen patients were included, with detailed collection of other clinical variables and follow-up. A certain degree of abnormalities in RBCs morphology was observed in 75 (65%) patients. Heterogenous alterations were noted, with spiculated cells being the more frequent morphology. The group with >10% RBCs abnormalities had more consistent lymphopenia and thrombocytopenia compared to those without abnormalities or <10% RBCs abnormalities (p < 0.018, and p < 0.021, respectively), thus underpinning a possible association with an overall more sustained immune-inflammatory "stress" hematopoiesis. Follow-up analysis showed a different mortality rate across groups, with the highest rate in those with more frequent RBCs morphological alterations compared to those with <10% or no abnormalities (41.9%, vs. 20.5%, vs. 12.5%, respectively, p = 0.012). Despite the inherent limitations of such simple association, our results point out towards further studies on erythropoiesis alterations in the pathophysiology of COVID-19.

2.
Am J Hematol ; 97(11): 1404-1412, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1976682

ABSTRACT

Coronavirus Disease (COVID-19) can be considered as a human pathological model of inflammation combined with hypoxia. In this setting, both erythropoiesis and iron metabolism appear to be profoundly affected by inflammatory and hypoxic stimuli, which act in the opposite direction on hepcidin regulation. The impact of low blood oxygen levels on erythropoiesis and iron metabolism in the context of human hypoxic disease (e.g., pneumonia) has not been fully elucidated. This multicentric observational study was aimed at investigating the prevalence of anemia, the alterations of iron homeostasis, and the relationship between inflammation, hypoxia, and erythropoietic parameters in a cohort of 481 COVID-19 patients admitted both to medical wards and intensive care units (ICU). Data were collected on admission and after 7 days of hospitalization. On admission, nearly half of the patients were anemic, displaying mild-to-moderate anemia. We found that hepcidin levels were increased during the whole period of observation. The patients with a higher burden of disease (i.e., those who needed intensive care treatment or had a more severe degree of hypoxia) showed lower hepcidin levels, despite having a more marked inflammatory pattern. Erythropoietin (EPO) levels were also lower in the ICU group on admission. After 7 days, EPO levels rose in the ICU group while they remained stable in the non-ICU group, reflecting that the initial hypoxic stimulus was stronger in the first group. These findings strengthen the hypothesis that, at least in the early phases, hypoxia-driven stimuli prevail over inflammation in the regulation of hepcidin and, finally, of erythropoiesis.


Subject(s)
Anemia , COVID-19 , Erythropoietin , Erythropoiesis/physiology , Hepcidins , Humans , Hypoxia , Inflammation , Iron
3.
Frontiers in physiology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1940114

ABSTRACT

Peripheral blood smear is a simple laboratory tool, which remains of invaluable help for diagnosing primary and secondary abnormalities of blood cells despite advances in automated and molecular techniques. Red blood cells (RBCs) abnormalities are known to occur in many viral infections, typically in the form of mild normo-microcytic anemia. While several hematological alterations at automated complete blood count (including neutrophilia, lymphopenia, and increased red cell distribution width—RDW) have been consistently associated with severity of COVID-19, there is scarce information on RBCs morphological abnormalities, mainly as case-reports or small series of patients, which are hardly comparable due to heterogeneity in sampling times and definition of illness severity. We report here a systematic evaluation of RBCs morphology at peripheral blood smear in COVID-19 patients within the first 72 h from hospital admission. One hundred and fifteen patients were included, with detailed collection of other clinical variables and follow-up. A certain degree of abnormalities in RBCs morphology was observed in 75 (65%) patients. Heterogenous alterations were noted, with spiculated cells being the more frequent morphology. The group with >10% RBCs abnormalities had more consistent lymphopenia and thrombocytopenia compared to those without abnormalities or <10% RBCs abnormalities (p < 0.018, and p < 0.021, respectively), thus underpinning a possible association with an overall more sustained immune-inflammatory “stress” hematopoiesis. Follow-up analysis showed a different mortality rate across groups, with the highest rate in those with more frequent RBCs morphological alterations compared to those with <10% or no abnormalities (41.9%, vs. 20.5%, vs. 12.5%, respectively, p = 0.012). Despite the inherent limitations of such simple association, our results point out towards further studies on erythropoiesis alterations in the pathophysiology of COVID-19.

4.
Semin Hematol ; 58(3): 182-187, 2021 07.
Article in English | MEDLINE | ID: covidwho-1500774

ABSTRACT

Iron is a micronutrient essential for a wide range of metabolic processes in virtually all living organisms. During infections, a battle for iron takes place between the human host and the invading pathogens. The liver peptide hepcidin, which is phylogenetically and structurally linked to defensins (antimicrobial peptides of the innate immunity), plays a pivotal role by subtracting iron to pathogens through its sequestration into host cells, mainly macrophages. While this phenomenon is well studied in certain bacterial infections, much less is known regarding viral infections. Iron metabolism also has implications on the functionality of cells of the immune system. Once primed by the contact with antigen presenting cells, lymphocytes need iron to sustain the metabolic burst required for mounting an effective cellular and humoral response. The COVID-19 pandemic has boosted an amount of clinical and translational research over the possible influences of nutrients on SARS-CoV-2 infection, in terms of either susceptibility or clinical course. Here we review the intersections between iron metabolism and COVID-19, belonging to the wider domain of the so-called "nutritional immunity". A better understanding of such connections has potential broad implications, either from a mechanistic standpoint, or for the development of more effective strategies for managing COVID-19 and possible future pandemics.


Subject(s)
COVID-19 , Iron/metabolism , COVID-19/immunology , COVID-19/metabolism , Humans , Immunity, Innate , Lymphocytes , Pandemics
5.
Antioxidants (Basel) ; 10(11)2021 Oct 25.
Article in English | MEDLINE | ID: covidwho-1480547

ABSTRACT

Even though COVID-19 is mostly well-known for affecting respiratory pathology, it can also result in several extrapulmonary manifestations, leading to multiorgan damage. A recent reported case of SARS-CoV-2 myocarditis with cardiogenic shock showed a signature of myocardial and kidney ferroptosis, a novel, iron-dependent programmed cell death. The term ferroptosis was coined in the last decade to describe the form of cell death induced by the small molecule erastin. As a specific inducer of ferroptosis, erastin inhibits cystine-glutamate antiporter system Xc-, blocking transportation into the cytoplasm of cystine, a precursor of glutathione (GSH) in exchange with glutamate and the consequent malfunction of GPX4. Ferroptosis is also promoted by intracellular iron overload and by the iron-dependent accumulation of polyunsaturated fatty acids (PUFA)-derived lipid peroxides. Since depletion of GSH, inactivation of GPX4, altered iron metabolism, and upregulation of PUFA peroxidation by reactive oxygen species are peculiar signs of COVID-19, there is the possibility that SARS-CoV-2 may trigger ferroptosis in the cells of multiple organs, thus contributing to multiorgan damage. Here, we review the molecular mechanisms of ferroptosis and its possible relationship with SARS-CoV-2 infection and multiorgan damage. Finally, we analyze the potential interventions that may combat ferroptosis and, therefore, reduce multiorgan damage.

6.
Diagnostics (Basel) ; 11(3)2021 Mar 12.
Article in English | MEDLINE | ID: covidwho-1158368

ABSTRACT

The cardiopulmonary exercise test (CPET) provides an objective assessment of ventilatory limitation, related to the exercise minute ventilation (VE) coupled to carbon dioxide output (VCO2) (VE/VCO2); high values of VE/VCO2 slope define an exercise ventilatory inefficiency (EVin). In subjects recovered from hospitalised COVID-19, we explored the methodology of CPET in order to evaluate the presence of cardiopulmonary alterations. Our prospective study (RESPICOVID) has been proposed to evaluate pulmonary damage's clinical impact in post-COVID subjects. In a subgroup of subjects (RESPICOVID2) without baseline confounders, we performed the CPET. According to the VE/VCO2 slope, subjects were divided into having EVin and exercise ventilatory efficiency (EVef). Data concerning general variables, hospitalisation, lung function, and gas-analysis were also collected. The RESPICOVID2 enrolled 28 subjects, of whom 8 (29%) had EVin. As compared to subjects with EVef, subjects with EVin showed a reduction in heart rate (HR) recovery. VE/VCO2 slope was inversely correlated with HR recovery; this correlation was confirmed in a subgroup of older, non-smoking male subjects, regardless of the presence of arterial hypertension. More than one-fourth of subjects recovered from hospitalised COVID-19 have EVin. The relationship between EVin and HR recovery may represent a novel hallmark of post-COVID cardiopulmonary alterations.

7.
J Clin Med ; 10(5)2021 Mar 03.
Article in English | MEDLINE | ID: covidwho-1125394

ABSTRACT

Patients who have recovered from COVID-19 show persistent symptoms and lung function alterations with a restrictive ventilatory pattern. Few data are available evaluating an extended period of COVID-19 clinical progression. The RESPICOVID study has been designed to evaluate patients' pulmonary damage previously hospitalised for interstitial pneumonia due to COVID-19. We focused on the arterial blood gas (ABG) analysis variables due to the initial observation that some patients had hypocapnia (arterial partial carbon dioxide pressure-PaCO2 ≤ 35 mmHg). Therefore, we aimed to characterise patients with hypocapnia compared to patients with normocapnia (PaCO2 > 35 mmHg). Data concerning demographic and anthropometric variables, clinical symptoms, hospitalisation, lung function and gas-analysis were collected. Our study comprised 81 patients, of whom 19 (24%) had hypocapnia as compared to the remaining (n = 62, 76%), and defined by lower levels of PaCO2, serum bicarbonate (HCO3-), carbon monoxide diffusion capacity (DLCO), and carbon monoxide transfer coefficient (KCO) with an increased level of pH and arterial partial oxygen pressure (PaO2). KCO was directly correlated with PaCO2 and inversely with pH. In our preliminary report, hypocapnia is associated with a residual lung function impairment in diffusing capacity. We focus on ABG analysis's informativeness in the follow-up of post-COVID patients.

SELECTION OF CITATIONS
SEARCH DETAIL